In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well known strategies normally used for standards PDEs. We investigate how the known results extend (or not) to higher order frequencies.
翻译:在本文中,我们讨论了近似于等离值问题的减序模型。特别是,我们感兴趣的是存在交叉点或电子值组。这些现象的独一性使得我们很难直接概括通常用于标准PDE的众所周知的战略。我们调查已知结果如何(或不)扩展到(或)更高的频率。