Processing computation-intensive jobs at multiple processing cores in parallel is essential in many real-world applications. In this paper, we consider an idealised model for job parallelism in which a job can be served simultaneously by $d$ distinct servers. The job is considered complete when the total amount of work done on it by the $d$ servers equals its size. We study the effect of parallelism on the average delay of jobs. Specifically, we analyze a system consisting of $n$ parallel processor sharing servers in which jobs arrive according to a Poisson process of rate $n \lambda$ ($\lambda <1$) and each job brings an exponentially distributed amount of work with unit mean. Upon arrival, a job selects $d$ servers uniformly at random and joins all the chosen servers simultaneously. We show by a mean-field analysis that, for fixed $d \geq 2$ and large $n$, the average occupancy of servers is $O(\log (1/(1-\lambda)))$ as $\lambda \to 1$ in comparison to $O(1/(1-\lambda))$ average occupancy for $d=1$. Thus, we obtain an exponential reduction in the response time of jobs through parallelism. We make significant progress towards rigorously justifying the mean-field analysis.
翻译:以多个处理核心平行处理计算密集型工作对于许多现实世界应用程序至关重要。 在本文中, 我们考虑一种理想化的工作平行模式, 工作可以同时由美元不同的服务器同时服务。 当美元服务器完成的工作总量与其大小相等时, 工作就被视为已完成。 我们研究平行对平均延迟工作的影响。 具体地说, 我们分析一个由美元平行处理器共享服务器组成的系统, 该系统由美元平行处理器组成, 工作根据Poisson的费率( $\lambda < 1美元) 运达, 每项工作都带来一个指数分布式的单位平均工作量。 到达时, 工作会以随机方式选择美元服务器, 并同时加入所有选定的服务器。 我们通过平均实地分析显示, 对于固定的 $ 2 和 大 美元, 服务器的平均占用量是 $( log ( 1\\\ blambda) ) = $(lambda) $( 1美元) 和 1美元 美元到 美元 美元 单位平均分配的工作数量。, 与 美元( 1\\\\\\\\\\\\\\ lamda) labda = 平均递增 工作进度。