Transformer is a successful deep neural network (DNN) architecture that has shown its versatility not only in natural language processing but also in music information retrieval (MIR). In this paper, we present a novel Transformer-based approach to tackle beat and downbeat tracking. This approach employs SpecTNT (Spectral-Temporal Transformer in Transformer), a variant of Transformer that models both spectral and temporal dimensions of a time-frequency input of music audio. A SpecTNT model uses a stack of blocks, where each consists of two levels of Transformer encoders. The lower-level (or spectral) encoder handles the spectral features and enables the model to pay attention to harmonic components of each frame. Since downbeats indicate bar boundaries and are often accompanied by harmonic changes, this step may help downbeat modeling. The upper-level (or temporal) encoder aggregates useful local spectral information to pay attention to beat/downbeat positions. We also propose an architecture that combines SpecTNT with a state-of-the-art model, Temporal Convolutional Networks (TCN), to further improve the performance. Extensive experiments demonstrate that our approach can significantly outperform TCN in downbeat tracking while maintaining comparable result in beat tracking.


翻译:变异器是一个成功的深神经网络(DNN)结构,它不仅在自然语言处理中,而且在音乐信息检索中都显示出其多功能性。在本文中,我们展示了一种新型的变异器处理击打和击败跟踪方法。这个方法采用了SpecTNT(变异器中的外观-时空变异器),这是变异器的一种变异器,该变异器既模拟了时频谱输入音乐音频的光谱和时间维度。SpecTNT模型使用一组块块,其中每个块由两个层次的变异器编码器组成。低级(或光谱)编码器处理光谱特性,并使该模型能够关注每个框架的相容构件。由于下游器显示条框的界限,而且往往伴有调和变器变化器的变化,这一步骤可能有助于下调模型。高层次(或时空)的摄像器聚合了有用的本地光谱信息,以引起对击/击败位置的注意。我们还提议一个结构,将SpectTRNT与状态模型结合起来,可以进一步改进我们的动态跟踪,同时进行可进行模拟的模拟。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
0+阅读 · 2022年7月15日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员