Localization based on received signal strength (RSS) has drawn great interest in the wireless sensor network (WSN). In this paper, we investigate the RSS-based multi-sources localization problem with unknown transmitted power under shadow fading. The log-normal shadowing effect is approximated through Fenton-Wilkinson (F-W) method and maximum likelihood estimation is adopted to optimize the RSS-based multiple sources localization problem. Moreover, we exploit a sparse recovery and weighted average of candidates (SR-WAC) based method to set up an initiation, which can efficiently approach a superior local optimal solution. It is shown from the simulation results that the proposed method has a much higher localization accuracy and outperforms the other


翻译:基于收到信号强度的本地化(RSS)已经引起人们对无线传感器网络(WSN)的极大兴趣。在本文中,我们调查了在阴影消退下不明传输电源的基于RSS的多源源本地化问题,通过Fenton-Wilkinson(F-W)方法和最大可能性估计的日志正常影子效应近似于Fenton-Wilkinson(F-W)方法,以优化基于RSS的多源本地化问题。此外,我们利用基于候选人(SR-WAC)的零星恢复和加权平均数(SR-WAC)方法建立一个启动程序,这可以有效地接近优于当地的最佳解决方案。模拟结果表明,拟议方法的本地化精度远高于其他方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月4日
Arxiv
6+阅读 · 2021年3月11日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员