The transferable belief model, as a semantic interpretation of Dempster-Shafer theory, enables agents to perform reasoning and decision making in imprecise and incomplete environments. The model offers distinct semantics for handling unreliable testimonies, allowing for a more reasonable and general process of belief transfer compared to the Bayesian approach. However, because both the belief masses and the structure of focal sets must be considered when updating belief functions-leading to extra computational complexity during reasoning-the transferable belief model has gradually lost favor among researchers in recent developments. In this paper, we implement the transferable belief model on quantum circuits and demonstrate that belief functions offer a more concise and effective alternative to Bayesian approaches within the quantum computing framework. Furthermore, leveraging the unique characteristics of quantum computing, we propose several novel belief transfer approaches. More broadly, this paper introduces a new perspective on basic information representation for quantum AI models, suggesting that belief functions are more suitable than Bayesian approach for handling uncertainty on quantum circuits.
翻译:暂无翻译