Fair resource allocation is one of the most important topics in communication networks. Existing solutions almost exclusively assume each user utility function is known and concave. This paper seeks to answer the following question: how to allocate resources when utility functions are unknown, even to the users? This answer has become increasingly important in the next-generation AI-aware communication networks where the user utilities are complex and their closed-forms are hard to obtain. In this paper, we provide a new solution using a distributed and data-driven bilevel optimization approach, where the lower level is a distributed network utility maximization (NUM) algorithm with concave surrogate utility functions, and the upper level is a data-driven learning algorithm to find the best surrogate utility functions that maximize the sum of true network utility. The proposed algorithm learns from data samples (utility values or gradient values) to autotune the surrogate utility functions to maximize the true network utility, so works for unknown utility functions. For the general network, we establish the nonasymptotic convergence rate of the proposed algorithm with nonconcave utility functions. The simulations validate our theoretical results and demonstrate the great effectiveness of the proposed method in a real-world network.
翻译:公平资源分配是通信网络中最重要的议题之一。 现有解决方案几乎完全假定每个用户使用功能都是已知的, 并且相互交织。 本文试图回答以下问题: 当使用功能未知时, 如何分配资源, 甚至给用户? 这个答案在下一代的 AI- aware 通信网络中变得日益重要, 因为用户公用事业复杂, 其封闭形式难以获得 。 在本文中, 我们使用分布式和数据驱动的双级优化方法, 提供了一个新的解决方案, 低层次是带有 concave 代理功能的分布式网络使用功能最大化算法, 高层次是数据驱动的学习算法, 以找到最佳的代理功能, 以最大化真实网络效用的总和 。 拟议的算法从数据样本( 利用率值或梯度值) 中学习自动调控管代理功能, 以最大限度地实现真正的网络效用, 从而实现未知的效用功能。 对于一般网络, 我们建立了与非 Concover 公用事业功能的拟议算法的不协调性合并率。 模拟了我们的理论结果, 并展示了拟议方法的巨大有效性 。