Virtual and robotic agents capable of perceiving human empathy have the potential to participate in engaging and meaningful human-machine interactions that support human well-being. Prior research in computational empathy has focused on designing empathic agents that use verbal and nonverbal behaviors to simulate empathy and attempt to elicit empathic responses from humans. The challenge of developing agents with the ability to automatically perceive elicited empathy in humans remains largely unexplored. Our paper presents the first approach to modeling user empathy elicited during interactions with a robotic agent. We collected a new dataset from the novel interaction context of participants listening to a robot storyteller (46 participants, 6.9 hours of video). After each storytelling interaction, participants answered a questionnaire that assessed their level of elicited empathy during the interaction with the robot. We conducted experiments with 8 classical machine learning models and 2 deep learning models (long short-term memory networks and temporal convolutional networks) to detect empathy by leveraging patterns in participants' visual behaviors while they were listening to the robot storyteller. Our highest-performing approach, based on XGBoost, achieved an accuracy of 69% and AUC of 72% when detecting empathy in videos. We contribute insights regarding modeling approaches and visual features for automated empathy detection. Our research informs and motivates future development of empathy perception models that can be leveraged by virtual and robotic agents during human-machine interactions.
翻译:能够感知人类同情的虚拟和机器人代理人有可能参与参与和有意义的人类机器互动,从而支持人类福祉。计算同情的先前研究侧重于设计使用口头和非口头行为来模拟同情和试图从人类得到同情反应的感化剂。开发能自动感知人类同情感的代理人的挑战基本上尚未探索。我们的论文展示了在与机器人代理人互动期间通过利用参与者的视觉行为模式来发现同情的首个方法。我们收集了从参与者听机器人故事家的新颖互动背景中获取的新数据集(46名参与者,6.9小时视频)。每次讲故事的互动之后,参与者回答了一个问卷,评估了他们在与机器人互动期间的感化同情程度。我们用8个经典机器学习模型和2个深层次学习模型(长期记忆网络和时空革命网络)进行了实验,以便利用参与者在听机器人故事书的感官行为模式来发现同情力。我们在XGBoost的基础上,在与机器人互动中实现了69%的准确度和72%的AUC的虚拟感化反应。在探测视频时,我们通过检测时,能够通过智能感化的感化和感化力感官分析方法来检测。