We study the problem of designing dynamic intervention policies for minimizing networked defaults in financial networks. Formally, we consider a dynamic version of the celebrated Eisenberg-Noe model of financial network liabilities, and use this to study the design of external intervention policies. Our controller has a fixed resource budget in each round, and can use this to minimize the effect of demand/supply shocks in the network. We formulate the optimal intervention problem as a Markov Decision Process, and show how we can leverage the problem structure to efficiently compute optimal intervention policies with continuous interventions, and constant-factor approximations with discrete interventions. Going beyond financial networks, we argue that our model captures dynamic network intervention in a much broader class of dynamic demand/supply settings with networked inter-dependencies. To demonstrate this, we apply our intervention algorithms to a wide variety of application domains, including ridesharing, online transaction platforms, and financial networks with agent mobility; in each case, we study the relationship between node centrality and intervention strength, as well as fairness properties of the optimal interventions.
翻译:我们研究如何设计动态干预政策,以尽量减少金融网络中的网络违约现象。 正式地,我们考虑一个动态版本的著名的Eisenberg-Noe金融网络负债模式,并以此研究外部干预政策的设计。 我们的主计长在每个回合都有固定的资源预算,可以以此最大限度地减少网络中需求/供应冲击的影响。 我们作为Markov决策程序制定了最佳干预问题,并展示我们如何能够利用问题结构,以连续干预和连续干预来高效地计算最佳干预政策。 超越金融网络,我们认为,我们的模型可以捕捉范围更广、动态需求/供应环境以及网络相互依存的动态网络干预。 为了证明这一点,我们将我们的干预算法应用到广泛的应用领域,包括搭乘共享、在线交易平台和具有代理流动性的金融网络; 在每一种情况下,我们研究节能和干预力量之间的关系,以及最佳干预的公平性。