Emotion prediction plays an essential role in mental health and emotion-aware computing. The complex nature of emotion resulting from its dependency on a person's physiological health, mental state, and his surroundings makes its prediction a challenging task. In this work, we utilize mobile sensing data to predict happiness and stress. In addition to a person's physiological features, we also incorporate the environment's impact through weather and social network. To this end, we leverage phone data to construct social networks and develop a machine learning architecture that aggregates information from multiple users of the graph network and integrates it with the temporal dynamics of data to predict emotion for all the users. The construction of social networks does not incur additional cost in terms of EMAs or data collection from users and doesn't raise privacy concerns. We propose an architecture that automates the integration of a user's social network affect prediction, is capable of dealing with the dynamic distribution of real-life social networks, making it scalable to large-scale networks. Our extensive evaluation highlights the improvement provided by the integration of social networks. We further investigate the impact of graph topology on model's performance.
翻译:情感预测在心理健康和情感-意识计算中发挥着不可或缺的作用。 情感的复杂性质由于依赖一个人的生理健康、精神状态及其周围环境而导致的情感的复杂性质使其预测成为一项具有挑战性的任务。 在这项工作中,我们使用移动遥感数据来预测幸福和压力。 除了人的生理特征外,我们还通过天气和社会网络将环境影响纳入其中。 为此,我们利用电话数据来构建社交网络和开发一个机器学习结构,将来自图形网络多个用户的信息汇总起来,并将它与数据的时间动态结合起来,以预测所有用户的情感。 社会网络的建设不会在EMAs或从用户收集数据方面产生额外的成本,也不会引起隐私问题。 我们建议建立一个将用户社会网络的整合自动化影响预测的架构,能够应对真实生活社会网络的动态分布,使其可扩缩到大型网络。 我们的广泛评价凸显了社会网络整合带来的改进。 我们进一步调查图表表层学对模型性能的影响。