Modern neural network architectures still struggle to learn algorithmic procedures that require to systematically apply compositional rules to solve out-of-distribution problem instances. In this work, we focus on formula simplification problems, a class of synthetic benchmarks used to study the systematic generalization capabilities of neural architectures. We propose a modular architecture designed to learn a general procedure for solving nested mathematical formulas by only relying on a minimal set of training examples. Inspired by rewriting systems, a classic framework in symbolic artificial intelligence, we include in the architecture three specialized and interacting modules: the Selector, trained to identify solvable sub-expressions; the Solver, mapping sub-expressions to their values; and the Combiner, replacing sub-expressions in the original formula with the solution provided by the Solver. We benchmark our system against the Neural Data Router, a recent model specialized for systematic generalization, and a state-of-the-art large language model (GPT-4) probed with advanced prompting strategies. We demonstrate that our approach achieves a higher degree of out-of-distribution generalization compared to these alternative approaches on three different types of formula simplification problems, and we discuss its limitations by analyzing its failures.
翻译:暂无翻译