We study the algebraic connectivity for several classes of random semi-regular graphs. For large random semi-regular bipartite graphs, we explicitly compute both their algebraic connectivity and as well as the full spectrum distribution. For an integer $d\in\left[ 3,7\right] $, we find families of random semi-regular graphs that have higher algebraic connectivity than a random $d$-regular graphs with the same number of vertices and edges. On the other hand, we show that regular graphs beat semi-regular graphs when $d\geq8.$ More generally, we study random semi-regular graphs whose average degree is $d$, not necessary an integer. This provides a natural generalization of a $d$-regular graph in the case of a non-integer $d.$ We characterise their algebraic connectivity in terms of a root of a certain 6th-degree polynomial. Finally, we construct a small-world-type network of average degree 2.5 with a relatively high algebraic connectivity. We also propose some related open problems and conjectures.
翻译:我们研究几类随机半正态图的代数连接。 对于大型随机半正态双边图, 我们明确计算它们的代数连接和全谱分布。 对于一个整数 $d\ in\ left[ 3,7\right] [ 3, 7\right] 美元, 我们发现随机半正态图的组合, 其代数连接率高于一个随机的 $d- od- 普通图。 另一方面, 我们显示, 普通图比对准半正态图, 当 $\ge8. 美元时, 我们更一般地说, 我们研究其平均程度为$美元, 不需要整数的随机半正态图。 这为非正态图提供了非正统化的 $dd. $. 美元 。 我们用某种六度多面多面图的根来描述其代数的代数。 最后, 我们建了一个中等2.5 的小型世界型网络, 和相对高平面连接度的平面图。