We tackle the domain generalisation (DG) problem by posing it as a domain adaptation (DA) task where we adversarially synthesise the worst-case target domain and adapt a model to that worst-case domain, thereby improving the model's robustness. To synthesise data that is challenging yet semantics-preserving, we generate Fourier amplitude images and combine them with source domain phase images, exploiting the widely believed conjecture from signal processing that amplitude spectra mainly determines image style, while phase data mainly captures image semantics. To synthesise a worst-case domain for adaptation, we train the classifier and the amplitude generator adversarially. Specifically, we exploit the maximum classifier discrepancy (MCD) principle from DA that relates the target domain performance to the discrepancy of classifiers in the model hypothesis space. By Bayesian hypothesis modeling, we express the model hypothesis space effectively as a posterior distribution over classifiers given the source domains, making adversarial MCD minimisation feasible. On the DomainBed benchmark including the large-scale DomainNet dataset, the proposed approach yields significantly improved domain generalisation performance over the state-of-the-art.
翻译:我们处理域一般化(DG)问题,办法是将它描述成一个域性适应(DA)任务,即我们对抗性地合成最坏情况目标域,并将模型模型的模型调整到最坏情况域,从而改进模型的稳健性。为了合成具有挑战性但具有语义保存能力的数据,我们制作了Fourier振幅图象,并将其与源域相图像结合起来,利用从信号处理中广泛相信的推测,即振幅光谱主要决定图像样式,而阶段数据则主要捕捉图像语义。为了合成最坏情况域,我们培训了分类者和振幅生成者,从而进行对准。具体地说,我们利用DA的最大分类差异(MCD)原则,将目标域性能与模型假设空间中的分类者差异联系起来。通过Bayesian假设模型,我们有效地表达模型假设空间,作为来源域的分类者之上的后方分布,使对抗性MCD最小化成为可行。关于包括大型域网域数据集在内的域域性基准,拟议方法大大改进了全域性业绩。