This work addresses the challenges associated with the use of glosses in both Sign Language Translation (SLT) and Sign Language Production (SLP). While glosses have long been used as a bridge between sign language and spoken language, they come with two major limitations that impede the advancement of sign language systems. First, annotating the glosses is a labor-intensive and time-consuming process, which limits the scalability of datasets. Second, the glosses oversimplify sign language by stripping away its spatio-temporal dynamics, reducing complex signs to basic labels and missing the subtle movements essential for precise interpretation. To address these limitations, we introduce Universal Gloss-level Representation (UniGloR), a framework designed to capture the spatio-temporal features inherent in sign language, providing a more dynamic and detailed alternative to the use of the glosses. The core idea of UniGloR is simple yet effective: We derive dense spatio-temporal representations from sign keypoint sequences using self-supervised learning and seamlessly integrate them into SLT and SLP tasks. Our experiments in a keypoint-based setting demonstrate that UniGloR either outperforms or matches the performance of previous SLT and SLP methods on two widely-used datasets: PHOENIX14T and How2Sign.
翻译:暂无翻译