Annotation is a major hurdle in the semantic segmentation of microscopy images and volumes due to its prerequisite expertise and effort. This work enables the training of semantic segmentation networks on images with only a single point for training per instance, an extreme case of weak supervision which drastically reduces the burden of annotation. Our approach has two key aspects: (1) we construct a graph-theoretic soft-segmentation using individual seeds to be used within a regularizer during training and (2) we use an objective function that enables learning from the constructed soft-labels. We achieve competitive results against the state-of-the-art in point-supervised semantic segmentation on challenging datasets in digital pathology. Finally, we scale our methodology to point-supervised segmentation in 3D fluorescence microscopy volumes, obviating the need for arduous manual volumetric delineation. Our code is freely available.
翻译:由于具备必要的专门知识和努力,说明是微镜图像和体积的语义分解的主要障碍。这项工作使得能够对图像的语义分解网络进行培训,只有单一的培训点,每个案例只有一个单一的语义分解网络,这是监督薄弱的极端案例,极大地减轻了批注的负担。我们的方法有两个关键方面:(1) 我们用在培训过程中在常规化器中使用的单个种子建立一个图形-理论软分解,(2) 我们使用一种客观功能,能够从所建的软标签中学习。我们在数字病理学中挑战性数据集时,实现了最先进的近门级语义分解的竞争性结果。最后,我们将我们的方法扩大到三维荧光显微镜中点的超异分解,从而不必人工进行艰苦的体积分解。我们的代码是免费的。