Neural Machine translation is a challenging task due to the inherent complex nature and the fluidity that natural languages bring. Nonetheless, in recent years, it has achieved state-of-the-art performance in several language pairs. Although, a lot of traction can be seen in the areas of multilingual neural machine translation (MNMT) in the recent years, there are no comprehensive survey done to identify what approaches work well. The goal of this paper is to investigate the realm of low resource languages and build a Neural Machine Translation model to achieve state-of-the-art results. The paper looks to build upon the mBART language model and explore strategies to augment it with various NLP and Deep Learning techniques like back translation and transfer learning. This implementation tries to unpack the architecture of the NMT application and determine the different components which offers us opportunities to amend the said application within the purview of the low resource languages problem space.


翻译:神经机器翻译是一项具有挑战性的任务,由于自然语言的内在复杂性和流动性,它具有固有的复杂性。尽管近年来在多语言神经机器翻译(MNMT)领域取得了很多进展,但尚未进行综合调查以确定哪些方法奏效。本文旨在调查低资源语言领域,并建立一个神经机器翻译模型,以实现最先进的结果。本论文旨在建立在mBART语言模型的基础上,并探索采用各种NLP和深度学习技术如反向翻译和迁移学习等策略对其进行增强。本次实现试图解包NMT应用程序的体系结构,并确定不同的组件,这为我们在低资源语言问题空间的范围内提供了修改该应用程序的机会。

0
下载
关闭预览

相关内容

神经机器翻译NMT使用基于神经网络的技术来实现更多上下文精确的翻译,而不是一次翻译一个单词的破碎句子。使用大型人工神经网络计算单词序列的概率,NMT将完整的句子放入一个集成模型中。
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关基金
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员