A promising approach to accurate positioning of robots is ground texture based localization. It is based on the observation that visual features of ground images enable fingerprint-like place recognition. We tackle the issue of efficient parametrization of such methods, deriving a prediction model for localization performance, which requires only a small collection of sample images of an application area. In a first step, we examine whether the model can predict the effects of changing one of the most important parameters of feature-based localization methods: the number of extracted features. We examine two localization methods, and in both cases our evaluation shows that the predictions are sufficiently accurate. Since this model can be used to find suitable values for any parameter, we then present a holistic parameter optimization framework, which finds suitable texture-specific parameter configurations, using only the model to evaluate the considered parameter configurations.
翻译:精确机器人定位的一个很有希望的方法是基于地面质地的定位。 它基于地面图像的视觉特征能够使指纹相似的位置识别的观察。 我们解决了这些方法的高效近似于指纹的位置识别问题, 产生了一种定位性表现的预测模型, 这只需要对一个应用区的样本图像进行少量的收集。 首先, 我们检查该模型能否预测改变基于地物的本地化方法的最重要参数之一的影响: 提取的特征的数量。 我们研究了两种本地化方法, 在两种情况下, 我们的评估都表明这些预测都足够准确。 由于该模型可以用来为任何参数找到合适的值, 我们随后提出了一个整体参数优化框架, 找到合适的特定质地参数配置, 仅使用模型来评估考虑的参数配置 。