Classification as a supervised learning concept is an important content in machine learning. It aims at categorizing a set of data into classes. There are several commonly-used classification methods nowadays such as k-nearest neighbors, random forest, and support vector machine. Each of them has its own pros and cons, and none of them is invincible for all kinds of problems. In this thesis, we focus on Quadratic Multiform Separation (QMS), a classification method recently proposed by Michael Fan et al. (2019). Its fresh concept, rich mathematical structure, and innovative definition of loss function set it apart from the existing classification methods. Inspired by QMS, we propose utilizing a gradient-based optimization method, Adam, to obtain a classifier that minimizes the QMS-specific loss function. In addition, we provide suggestions regarding model tuning through explorations of the relationships between hyperparameters and accuracies. Our empirical result shows that QMS performs as good as most classification methods in terms of accuracy. Its superior performance is almost comparable to those of gradient boosting algorithms that win massive machine learning competitions.


翻译:作为监督性学习概念的分类是机器学习的一个重要内容。 它旨在将一组数据分类为类别。 现在有几种常用的分类方法, 如 k- 近邻、 随机森林、 支持矢量机等 。 它们每个人都有自己的利弊, 没有一个对各种问题都不可战胜。 在这个论文中, 我们侧重于Quadratic 多形分离( QMS), 这是Michael Fan 等人( 2019年)最近提出的一种分类方法 。 它的新概念、 丰富的数学结构和损失函数的创新定义将它与现有的分类方法分开。 在QMS 的启发下, 我们提议使用一种基于梯度的优化方法, 亚当, 以获得一个能最大限度地减少QMS特定损失函数的分类器。 此外, 我们提供了关于通过探索超参数和加速度之间的关系来调整模型的建议。 我们的经验结果表明, QMS 表现为在准确性方面最优的分类方法。 它的优性表现几乎与那些赢得大规模机器学习竞赛的梯度加速算法相似 。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
8+阅读 · 2018年4月12日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员