The standard in rod finite element formulations is the Bubnov-Galerkin projection method, where the test functions arise from a consistent variation of the ansatz functions. This approach becomes increasingly complex when highly nonlinear ansatz functions are chosen to approximate the rod's centerline and cross-section orientations. Using a Petrov-Galerkin projection method, we propose a whole family of rod finite element formulations where the nodal generalized virtual displacements and generalized velocities are interpolated instead of using the consistent variations and time derivatives of the ansatz functions. This approach leads to a significant simplification of the expressions in the discrete virtual work functionals. In addition, independent strategies can be chosen for interpolating the nodal centerline points and cross-section orientations. We discuss three objective interpolation strategies and give an in-depth analysis concerning locking and convergence behavior for the whole family of rod finite element formulations.


翻译:标准的杆子有限元方法是布布诺夫-伽辽金投影方法,其中测试函数来自于一个一致的变化的假设函数。当选择高度非线性假设函数来逼近杆子的中心线和截面方向时,这种方法变得越来越复杂。使用泊松-伽萨金投影法,我们提出了整个杆子有限元方法的一整个族,其中节点广义虚位移和广义速度被插值,而不是使用一致变化和假设函数的时间导数。这种方法导致离散虚工作函数中的表达式显著简化。此外,可以选择独立的策略来插值节点中心线点和截面方向。我们讨论了三种客观的插值策略,并对整个杆子有限元方法的锁定和收敛行为进行了深入分析。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
专知会员服务
78+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
专知会员服务
78+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员