We study the d-dimensional hypercube knapsack problem where we are given a set of d-dimensional hypercubes with associated profits, and a knapsack which is a unit d-dimensional hypercube. The goal is to find an axis-aligned non-overlapping packing of a subset of hypercubes such that the profit of the packed hypercubes is maximized. For this problem, Harren (ICALP'06) gave an algorithm with an approximation ratio of (1+1/2^d+epsilon). For d=2, Jansen and Solis-Oba (IPCO'08) showed that the problem admits a polynomial-time approximation scheme (PTAS); Heydrich and Wiese (SODA'17) further improved the running time and gave an efficient polynomial-time approximation scheme (EPTAS). Both the results use structural properties of 2-D packing, which do not generalize to higher dimensions. For d>2, it remains open to obtain a PTAS, and in fact, there has been no improvement since Harren's result. We settle the problem by providing a PTAS. Our main technical contribution is a structural lemma which shows that any packing of hypercubes can be converted into another structured packing such that a high profitable subset of hypercubes is packed into a constant number of special hypercuboids, called V-Boxes and N-Boxes. As a side result, we give an almost optimal algorithm for a variant of the strip packing problem in higher dimensions. This might have applications for other multidimensional geometric packing problems.


翻译:我们研究的是二维超立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方(1+1/2+2++epsilon)。对于d=2, Jansen和Solis-Oba(IPCO'08)的方方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方立方。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月14日
Arxiv
0+阅读 · 2022年6月13日
Arxiv
0+阅读 · 2022年6月9日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员