Current state-of-the-art trackers often fail due to distractorsand large object appearance changes. In this work, we explore the use ofdense optical flow to improve tracking robustness. Our main insight is that, because flow estimation can also have errors, we need to incorporate an estimate of flow uncertainty for robust tracking. We present a novel tracking framework which combines appearance and flow uncertainty information to track objects in challenging scenarios. We experimentally verify that our framework improves tracking robustness, leading to new state-of-the-art results. Further, our experimental ablations shows the importance of flow uncertainty for robust tracking.
翻译:目前最先进的跟踪器往往由于分散器和大型物体外观变化而失灵。 在这项工作中,我们探索使用高密度光学流来改进跟踪稳健性。我们的主要见解是,由于流量估算也可能有误,我们需要将流量不确定性的估计纳入到稳健性跟踪中。我们提出了一个新的跟踪框架,将外观和不确定性信息结合起来,以跟踪具有挑战性的情景中的物体。我们实验性地核查我们的框架是否改善了跟踪稳健性,从而导致新的最新结果。此外,我们的实验推算显示流动不确定性对于稳健跟踪的重要性。