Recently geometric hypergraphs that can be defined by intersections of pseudohalfplanes with a finite point set were defined in a purely combinatorial way. This led to extensions of earlier results about points and halfplanes to pseudohalfplanes, including polychromatic colorings and discrete Helly-type theorems about pseudohalfplanes. Here we continue this line of research and introduce the notion of convex sets of such pseudohalfplane hypergraphs. In this context we prove several results corresponding to classical results about convexity, namely Helly Theorem, Carath\'eodory's Theorem, Kirchberger's Theorem, Separation Theorem, Radon's Theorem and the Cup-Cap Theorem. These results imply the respective results about pseudoconvex sets in the plane defined using pseudohalfplanes. It turns out that most of our results can be also proved using oriented matroids and topological affine planes (TAPs) but our approach is different from both of them. Compared to oriented matroids, our theory is based on a linear ordering of the vertex set which makes our definitions and proofs quite different and perhaps more elementary. Compared to TAPs, which are continuous objects, our proofs are purely combinatorial and again quite different in flavor. Altogether, we believe that our new approach can further our understanding of these fundamental convexity results.
翻译:最近通过假半平面交叉点来定义的近代几何高测图,这些高测图可以由假半平面的交叉点和定点设置来定义。这导致点和半平面的早期结果延伸至假半平面,包括多色色色和离散的热利型理论关于假半平面的离散理论。我们在这里继续这一研究线,并引入这种假半平面高测图的相形体概念。在这方面,我们证明一些结果与典型的共性结果相对应,即Helly Theorem、Carath\'omory的理论、Kirchberger的理论和半平面平面平面图的早期结果,包括多色色色色色的颜色和半平面图样的离间半平面图。这些结果表明,我们的大部分结果也可以用定向的配制和顶层平面平面平面平面平面平面平面平面平面平面平面平面方法(TAP)来证明,但我们的方法与两者不同。比较方向平面平面平面平面,或许的理论可能以不同的平面平面平面平面平面平面对。我们更直对。我们的理论,我们的理论根据不断的平面平面平面平面对。我们更直对地平面的理论进行。我们更直对地对地,比较的对地,比较的理论可能以直对地对地,比较,比较,比较的对地平面平面平面平面平面平面平面平面平面,比较理论根据,也许地对地对地对地对地基,对地对地对地对地基,对地对地对地对地基,对地基,对着地基,对地基,对地对地基,对地基,对地基,对地基,对地基,对地对地进行了。比较,对地基,对地基,对地基,对地基,对地基,对地对地基,对地基,对着地基,对地基,对地基,对地基,对地基,对地基,对地基,对地基,对地基,对地基,对地基,对地基,对地