Adaptive control can be applied to robotic systems with parameter uncertainties, but improving its performance is usually difficult, especially under discontinuous friction. Inspired by the human motor learning control mechanism, an adaptive learning control approach is proposed for a broad class of robotic systems with discontinuous friction, where a composite error learning technique that exploits data memory is employed to enhance parameter estimation. Compared with the classical feedback error learning control, the proposed approach can achieve superior transient and steady-state tracking without high-gain feedback and persistent excitation at the cost of extra computational burden and memory usage. The performance improvement of the proposed approach has been verified by experiments based on a DENSO industrial robot.
翻译:适应性控制可以适用于具有参数不确定性的机器人系统,但通常很难改进其性能,特别是在不连续摩擦的情况下。在人类运动学习控制机制的启发下,提议了一种适应性学习控制方法,用于一系列具有不连续摩擦的机器人系统,其中采用了利用数据内存的复合错误学习技术,以加强参数估计。与传统的反馈错误学习控制相比,拟议方法可以在不产生高增益反馈和以额外计算负担和内存使用成本持续引力的情况下实现高级瞬时和稳定状态跟踪。 以DENSO工业机器人为基础的实验已经核实了拟议方法的性能改进。