Quantum machine learning has become an area of growing interest but has certain theoretical and hardware-specific limitations. Notably, the problem of vanishing gradients, or barren plateaus, renders the training impossible for circuits with high qubit counts, imposing a limit on the number of qubits that data scientists can use for solving problems. Independently, angle-embedded supervised quantum neural networks were shown to produce truncated Fourier series with a degree directly dependent on two factors: the depth of the encoding, and the number of parallel qubits the encoding is applied to. The degree of the Fourier series limits the model expressivity. This work introduces two new architectures whose Fourier degrees grow exponentially: the sequential and parallel exponential quantum machine learning architectures. This is done by efficiently using the available Hilbert space when encoding, increasing the expressivity of the quantum encoding. Therefore, the exponential growth allows staying at the low-qubit limit to create highly expressive circuits avoiding barren plateaus. Practically, parallel exponential architecture was shown to outperform the existing linear architectures by reducing their final mean square error value by up to 44.7% in a one-dimensional test problem. Furthermore, the feasibility of this technique was also shown on a trapped ion quantum processing unit.
翻译:量子机器学习已成为人们日益感兴趣的领域,但具有某些理论和硬件方面的特定限制。值得注意的是,梯度消失的问题,或贫瘠的高原,使得培训无法用于高正方位计数的电路,对数据科学家可用于解决问题的平方位数施加限制。独立地,由角嵌入的受监督量子神经网络显示产生短速的四倍系列,其程度直接取决于两个因素:编码的深度和编码所应用的平行qubit数量。四倍数序列的程度限制了模型的表达性。这项工作引入了两种新的结构,其四倍数迅速增长:顺序和平行的指数机器学习结构。这是通过在编码时高效使用现有的Hilbert空间来完成的,增加了量子编码的表达性。因此,指数增长允许在低平方界限上停留,从而产生高清晰度的电路路程,避免不高温高。实际上,平行的指数结构通过降低其最后平均平方位错误值而超越了现有线性结构,从而降低了模型的表达性。在一维度试验中也展示了这一标准度上的可行性。