An important unresolved challenge in the theory of regularization is to set the regularization coefficients of popular techniques like the ElasticNet with general provable guarantees. We consider the problem of tuning the regularization parameters of Ridge regression, LASSO, and the ElasticNet across multiple problem instances, a setting that encompasses both cross-validation and multi-task hyperparameter optimization. We obtain a novel structural result for the ElasticNet which characterizes the loss as a function of the tuning parameters as a piecewise-rational function with algebraic boundaries. We use this to bound the structural complexity of the regularized loss functions and show generalization guarantees for tuning the ElasticNet regression coefficients in the statistical setting. We also consider the more challenging online learning setting, where we show vanishing average expected regret relative to the optimal parameter pair. We further extend our results to tuning classification algorithms obtained by thresholding regression fits regularized by Ridge, LASSO, or ElasticNet. Our results are the first general learning-theoretic guarantees for this important class of problems that avoid strong assumptions on the data distribution. Furthermore, our guarantees hold for both validation and popular information criterion objectives.
翻译:在正规化理论中,一个重要的尚未解决的挑战是将流行技术,如ElasticNet的正规化系数设定为具有一般可验证的保证。我们考虑了在多个问题实例中调整Ridge回归、LASSO和ElasticNet的正规化参数的问题,这一设置包括交叉验证和多任务超参数优化。我们为ElasticNet取得了一个新的结构结果,它将损失定性为调试参数的函数,与代数边界相匹配。我们利用这个结果来约束常规化损失功能的结构复杂性,并展示在统计环境中调整ElasticNet回归系数的通用保证。我们还考虑了更具挑战性的在线学习环境,我们在此环境中显示与最佳参数对比的平均预期遗憾消失。我们进一步扩展了我们的结果,以调整通过Ridge、LASSSO或ElasticNet的临界回归值相匹配的临界值获得的分类算法。我们的结果是,这是为避免数据分布上强有力假设的这一重要问题的这一类重要问题的第一个一般性学习理论性保证。此外,我们还考虑了大众信息标准。