We study two problems of private matrix multiplication, over a distributed computing system consisting of a master node, and multiple servers who collectively store a family of public matrices using Maximum-Distance-Separable (MDS) codes. In the first problem of Private and Secure Matrix Multiplication from Colluding servers (MDS-C-PSMM), the master intends to compute the product of its confidential matrix $\mathbf{A}$ with a target matrix stored on the servers, without revealing any information about $\mathbf{A}$ and the index of target matrix to some colluding servers. In the second problem of Fully Private Matrix Multiplication from Colluding servers (MDS-C-FPMM), the matrix $\mathbf{A}$ is also selected from another family of public matrices stored at the servers in MDS form. In this case, the indices of the two target matrices should both be kept private from colluding servers. We develop novel strategies for MDS-C-PSMM and MDS-C-FPMM, which simultaneously guarantee information-theoretic data/index privacy and computation correctness. The key ingredient is a careful design of secret sharings of the matrix $\mathbf{A}$ and the private indices, which are tailored to matrix multiplication task and MDS storage structure, such that the computation results from the servers can be viewed as evaluations of a polynomial at distinct points, from which the intended result can be obtained through polynomial interpolation. We compare the proposed MDS-C-PSMM strategy with a previous MDS-PSMM strategy with a weaker privacy guarantee (non-colluding servers), and demonstrate substantial improvements over the previous strategy in terms of communication and computation performance.


翻译:我们研究的是私人矩阵乘法的两个问题,即由主节点组成的分布式计算系统,以及使用最大偏差可分离代码(MDS)集体存储一组公共矩阵的多个服务器。在对调服务器(MDS-C-PSMM)的私人和安全矩阵乘法的第一个问题中,主机打算用存储在服务器上的目标矩阵计算其保密矩阵$\mathbf{A}的产物,而不透露任何关于$\mathbf{A}美元的信息,以及将目标矩阵索引存储到某些串联服务器。在对调服务器(MDDS-C)的全私基矩阵乘法第二问题中,矩阵 $\mathbf{A}也是从存储服务器(MDMS-MS-MS-MS-MLMS-MRMS-MS-C-MDS-FMMMM)中存储新的战略,这可以同时保证信息-母基母体的全体变变变变变法战略, 将前MDMS-MS-MS的存储和MISMIS-deal 和Mexalalexalxx 的预算结果显示。

1
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Private and Reliable Neural Network Inference
Arxiv
0+阅读 · 2022年10月27日
Arxiv
0+阅读 · 2022年10月26日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
Top
微信扫码咨询专知VIP会员