Cloud operators require real-time identification of Heavy Hitters (HH) and Hierarchical Heavy Hitters (HHH) for applications such as load balancing, traffic engineering, and attack mitigation. However, existing techniques are slow in detecting new heavy hitters. In this paper, we make the case for identifying heavy hitters through \textit{sliding windows}. Sliding windows detect heavy hitters quicker and more accurately than current methods, but to date had no practical algorithms. Accordingly, we introduce, design and analyze the \textit{Memento} family of sliding window algorithms for the HH and HHH problems in the single-device and network-wide settings. Using extensive evaluations, we show that our single-device solutions attain similar accuracy and are by up to $273\times$ faster than existing window-based techniques. Furthermore, we exemplify our network-wide HHH detection capabilities on a realistic testbed. To that end, we implemented Memento as an open-source extension to the popular HAProxy cloud load-balancer. In our evaluations, using an HTTP flood by 50 subnets, our network-wide approach detected the new subnets faster, and reduced the number of undetected flood requests by up to $37\times$ compared to the alternatives.
翻译:云端操作员需要实时识别重击手和高等级重击手,以便用于负荷平衡、交通工程和减少攻击等应用。 但是,在发现新的重击手方面,现有技术进展缓慢。 在本文中,我们通过\ textit{sliding window}来论证发现重击手。 滑动窗口比目前的方法更快、更准确地探测重击手, 但迄今为止没有实用的算法。 因此, 我们引入、 设计和分析单构件和全网络环境中的HHH和HHHHH问题滑动窗口算法系列。 我们通过广泛的评估, 显示我们的单构件解决方案的准确性相似, 并且比现有基于窗口的技术要快273美元。 此外, 我们展示了在现实的测试台上我们整个网络的HHHHHTP检测能力。 为此, 我们实施了Memento, 作为广受欢迎的HAProxyloadload-contralger 的开源扩展工具。 在我们的评估中,我们使用HTTPPFroadde 方法比我们50次网络的Flestal 要求更快地测量到新网络的Fentronet 。