We propose to study the Hessian metric of {a functional on the space of probability measures endowed with the Wasserstein $2$-metric}. We name it transport Hessian metric, which contains and extends the classical Wasserstein-$2$ metric. We formulate several dynamical systems associated with transport Hessian metrics. Several connections between transport Hessian metrics and mathematical physics equations are discovered. E.g., the transport Hessian gradient flow, including Newton's flow, formulates a mean-field kernel Stein variational gradient flow; The transport Hessian Hamiltonian flow of Boltzmann-Shannon entropy forms the Shallow water equation; The transport Hessian gradient flow of Fisher information {leads to} the heat equation. {Several examples and closed-form solutions for transport Hessian distances are presented.
翻译:我们建议研究在瓦塞斯坦2美元的概率测量空间上起作用的赫西安度量度。我们称之为运输赫西安度量度,它包含并扩展古典瓦西斯坦-2美元的度量度。我们开发了与运输赫西安度量度有关的若干动态系统。发现了赫西安度量度和数学物理方程之间的若干连接。例如,包括牛顿流在内的赫西安梯度流形成了一种中位内核斯坦变异梯度流;波尔兹曼-沙农的海森流构成浅水方程;渔业信息的运输赫西安梯度流,以引向热方程。 {为赫西安距离的运输提供了无数例子和封闭式解决办法。