Network embedding maps the nodes of a given network into a low-dimensional space such that the semantic similarities among the nodes can be effectively inferred. Most existing approaches use inner-product of node embedding to measure the similarity between nodes leading to the fact that they lack the capacity to capture complex relationships among nodes. Besides, they take the path in the network just as structural auxiliary information when inferring node embeddings, while paths in the network are formed with rich user informations which are semantically relevant and cannot be ignored. In this paper, We propose a novel method called Network Embedding on the Metric of Relation, abbreviated as NEMR, which can learn the embeddings of nodes in a relational metric space efficiently. First, our NEMR models the relationships among nodes in a metric space with deep learning methods including variational inference that maps the relationship of nodes to a gaussian distribution so as to capture the uncertainties. Secondly, our NEMR considers not only the equivalence of multiple-paths but also the natural order of a single-path when inferring embeddings of nodes, which makes NEMR can capture the multiple relationships among nodes since multiple paths contain rich user information, e.g., age, hobby and profession. Experimental results on several public datasets show that the NEMR outperforms the state-of-the-art methods on relevant inference tasks including link prediction and node classification.


翻译:网络将特定网络的节点嵌入低维空间, 从而可以有效地推断结点之间的语义相似性。 多数现有方法使用节点嵌入的内在产品来测量结点之间的相似性, 从而导致它们缺乏捕捉节点之间复杂关系的能力。 此外, 在推断结点嵌入时,它们将网络中的路径作为结构性辅助信息, 而网络中的路径则由丰富的用户信息组成, 这些信息具有语义相关性且不可忽视。 在本文中, 我们提议了一种名为 " 嵌入RelationMetic的网络 " 的新颖方法, 缩写成NEMR, 它可以学习节点嵌入一个关联度指标空间的内在产品。 首先, 我们的NEMR 模型将网络中的节点之间的关系作为结构辅助信息, 包括变化的推断, 绘制结点与毛利分布的关系, 以便捕捉到不确定性。 第二, 我们的NEMR认为, 我们的网路不仅没有多重路径的等等, 而且还包括单路的自然顺序, 在多重路径中, 显示多重路径的路径中, 包含多重路径的用户的路径 。

0
下载
关闭预览

相关内容

网络嵌入旨在学习网络中节点的低维度潜在表示,所学习到的特征表示可以用作基于图的各种任务的特征,例如分类,聚类,链路预测和可视化。
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月15日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
Top
微信扫码咨询专知VIP会员