LiDAR based place recognition is popular for loop closure detection and re-localization. In recent years, deep learning brings improvements to place recognition by learnable feature extraction. However, these methods degenerate when the robot re-visits previous places with large perspective difference. To address the challenge, we propose DeepRING to learn the roto-translation invariant representation from LiDAR scan, so that robot visits the same place with different perspective can have similar representations. There are two keys in DeepRING: the feature is extracted from sinogram, and the feature is aggregated by magnitude spectrum. The two steps keeps the final representation with both discrimination and roto-translation invariance. Moreover, we state the place recognition as a one-shot learning problem with each place being a class, leveraging relation learning to build representation similarity. Substantial experiments are carried out on public datasets, validating the effectiveness of each proposed component, and showing that DeepRING outperforms the comparative methods, especially in dataset level generalization.
翻译:以 LiDAR 为基础的位置识别对于循环闭合检测和重新定位来说很受欢迎。 近几年来, 深层次的学习带来改进, 通过可学习的特征提取来定位识别。 但是, 当机器人重新访问先前的位置时, 这些方法会发生退化, 且具有巨大的视角差异 。 为了应对这一挑战, 我们建议 Depring 学习来自 LiDAR 扫描的旋转翻译表达方式, 这样机器人可以以不同视角访问同一地点, 具有相似的表达方式 。 深层中有两个关键点 : 特征是从罪状中提取的, 特征是按星级谱汇总的 。 这两个步骤将最终的表达方式保留在歧视和转动变异性中。 此外, 我们将地点的识别方式描述为一次性的学习问题, 每个地方都是一个班级, 利用关联性学习来构建相似的表达方式 。 在公共数据集上进行了大量实验, 验证每个拟议组成部分的有效性, 并显示 Deprring 超越了比较方法, 特别是在数据集层的一般化中 。