项目名称: 基于地面三维激光扫描技术的树木三维建模与参数提取研究
项目编号: No.31500587
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 农业科学
项目作者: 林文树
作者单位: 东北林业大学
项目金额: 20万元
中文摘要: 针对目前地面三维激光扫描技术在树木参数提取和三维建模研究中存在的点云数据配准、缺失、点云数据有效去噪、树木参数自动提取以及点云数据与CCD影像融合等存在的问题,本项目提出基于地面三维激光扫描的树木三维建模和参数自动提取研究。通过利用地面三维激光扫描仪,采用控制靶标与贴片相组合的方法对黑龙江省小兴安岭地区主要树种进行激光扫描,对扫描得到的点云数据进行配准、修复、去噪、分割等有效处理与优化算法设计,并利用扫描仪CCD影像数据与处理后的点云数据进行精确融合,从而构建真实树木三维模型,最后根据已经构建的三维模型编制简单算法自动、高效提取树木测量因子,并对所构建的三维模型和提取的参数精确性进行实际验证。研究结果期望为实现快速、准确、高效地获取树木参数基本信息,及时监测森林资源的动态变化打下一定的基础,从而加大林业调查数字化和自动化程度,减少测量周期,使我国数字化林业理论和应用水平提高到一个新的层次。
中文关键词: 地面三维激光扫描;信息融合;可视化;树木建模;参数提取
英文摘要: Based on the existing problems in the point cloud data registration, deletion, effective de-noising, automatic extraction of tree parameters and fusion of CCD image and point cloud data for the current terrestrial laser scanning technology during tree parameters extraction and three-dimensional modeling, a study of modeling 3D trees and parameters extraction based on terrestrial 3D laser scanning technology is put forward. By using the terrestrial laser scanner and adopting control target and patch combined method, the major tree species in Xiaoxing'an mountain area in Heilongjiang Province were scanned. A series of effective data processing and optimization algorithms design were made on the obtained point cloud data such as registration, repair, de-noising, and segmentation. The CCD image data of the scanner was accurately fused with the processed point cloud data to construct a real three-dimensional model of the tree. Finally, a simple algorithm was compiled to automatically and efficiently extract the tree measurement factors based on the three-dimensional model that has been constructed, and the accuracy of the constructed three-dimensional model and the extracted parameters were verified. The study results are expected to lay a foundation for the rapid, accurate and efficient acquisition of the basic information of tree parameter and timely monitoring the dynamic changes of forest resources, thereby increasing the digital level and automation of forest inventory, reducing the measurement cycle, and help digital forestry theory and application level in China raise to a new level.
英文关键词: terrestrial 3D laser scanning ;information fusion;visualization;tree modeling;parameters extraction