Clustering has been one of the most basic and essential problems in unsupervised learning due to various applications in many critical fields. The recently proposed sum-of-nums (SON) model by Pelckmans et al. (2005), Lindsten et al. (2011) and Hocking et al. (2011) has received a lot of attention. The advantage of the SON model is the theoretical guarantee in terms of perfect recovery, established by Sun et al. (2018). It also provides great opportunities for designing efficient algorithms for solving the SON model. The semismooth Newton based augmented Lagrangian method by Sun et al. (2018) has demonstrated its superior performance over the alternating direction method of multipliers (ADMM) and the alternating minimization algorithm (AMA). In this paper, we propose a Euclidean distance matrix model based on the SON model. An efficient majorization penalty algorithm is proposed to solve the resulting model. Extensive numerical experiments are conducted to demonstrate the efficiency of the proposed model and the majorization penalty algorithm.


翻译:由于许多关键领域的各种应用,在未受监督的学习中,集群是最基本的和最基本的问题之一。最近由Pelckmans等人(2005年)、Lindsten等人(2011年)和Hocking等人(2011年)提出的“核心”模型模型得到了很多关注。Sun等人(2018年)建立的“核心”模型的优势是完全恢复方面的理论保障。它也为设计解决“核心”模型的有效算法提供了巨大的机会。基于Sun等人(2018年)的半斯莫特牛顿扩大了Lagrangian方法(2018年)的半斯莫特牛顿(Sun等人)(Sun等人(2018年))证明了它优于乘数交替方向法(ADMMM)和“交替最小化法”(AMA)的功能。在本文中,我们提出了以“核心”模型为基础的“远程矩阵模型”模型。提出了高效的主要惩罚算法以解决所产生的模型。进行了广泛的数字实验,以证明拟议的模型和主要惩罚算法的效率。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员