Reconstructing high-quality 3D objects from sparse, partial observations from a single view is of crucial importance for various applications in computer vision, robotics, and graphics. While recent neural implicit modeling methods show promising results on synthetic or dense data, they perform poorly on sparse and noisy real-world data. We discover that the limitations of a popular neural implicit model are due to lack of robust shape priors and lack of proper regularization. In this work, we demonstrate highquality in-the-wild shape reconstruction using: (i) a deep encoder as a robust-initializer of the shape latent-code; (ii) regularized test-time optimization of the latent-code; (iii) a deep discriminator as a learned high-dimensional shape prior; (iv) a novel curriculum learning strategy that allows the model to learn shape priors on synthetic data and smoothly transfer them to sparse real world data. Our approach better captures the global structure, performs well on occluded and sparse observations, and registers well with the ground-truth shape. We demonstrate superior performance over state-of-the-art 3D object reconstruction methods on two real-world datasets.
翻译:从一个单一的角度看,从稀少的、部分的观测中重建高质量的三维天体对于计算机视觉、机器人和图形的各种应用至关重要。虽然最近的神经隐含模型方法在合成或密集数据方面显示出有希望的结果,但它们在稀有和吵闹的现实世界数据方面表现不佳。我们发现,流行的神经隐含模型的局限性是由于缺乏稳健的形状前科和缺乏适当的正规化。在这项工作中,我们展示了高质量的网络形状重建质量,使用的方法有:(一) 深层编码作为形状隐形代码的强健初始;(二) 定期测试时间优化潜代码;(三) 深层区分器,作为以前学习的高维形状;(四) 新的课程学习战略,使模型能够学习合成数据以前的形状,并将它们顺利地转移到稀疏的世界数据。我们的方法更好地捕捉全球结构,在隐蔽和稀疏的观测上表现良好,并用地面结构进行登记。我们展示了两种现实世界数据集的3D天体重建方法的优劣性表现。