Relationships in scientific data, such as the numerical and spatial distribution relations of features in univariate data, the scalar-value combinations' relations in multivariate data, and the association of volumes in time-varying and ensemble data, are intricate and complex. This paper presents voxel2vec, a novel unsupervised representation learning model, which is used to learn distributed representations of scalar values/scalar-value combinations in a low-dimensional vector space. Its basic assumption is that if two scalar values/scalar-value combinations have similar contexts, they usually have high similarity in terms of features. By representing scalar values/scalar-value combinations as symbols, voxel2vec learns the similarity between them in the context of spatial distribution and then allows us to explore the overall association between volumes by transfer prediction. We demonstrate the usefulness and effectiveness of voxel2vec by comparing it with the isosurface similarity map of univariate data and applying the learned distributed representations to feature classification for multivariate data and to association analysis for time-varying and ensemble data.
翻译:科学数据中的关系,如单向数据特征的数值和空间分布关系、多变量数据中的计算值-价值组合关系、时间变化和共变数据中的量关联等,都是复杂而复杂的。本文展示了Voxel2vec,这是一个新颖的、不受监督的代表性学习模型,用于学习低维矢量空间中质量值/计算-价值组合分布式的表示法。它的基本假设是,如果两个质量值/计算-价值组合具有相似的环境,它们通常具有高度相似的特征。通过将标值/计算-价值组合作为符号, voxel2vec 了解它们在空间分布范围内的相似性,从而使我们能够通过传输预测来探索数量之间的总体关联。我们通过将 voxel2vec 与未计量数据表层相似的地图进行比较,并应用所学的分布式表述法来对多变量数据进行分类,以及用于时间变化和数据组合分析。