This paper provides the first comprehensive evaluation and analysis of modern (deep-learning) unsupervised anomaly detection methods for chemical process data. We focus on the Tennessee Eastman process dataset, which has been a standard litmus test to benchmark anomaly detection methods for nearly three decades. Our extensive study will facilitate choosing appropriate anomaly detection methods in industrial applications.
翻译:本文件首次全面评估和分析化学过程数据的现代(深层学习)异常现象探测方法。我们侧重于田纳西东部过程数据集,这是近30年来衡量异常现象探测方法的标准试金石。我们的广泛研究将有助于在工业应用中选择适当的异常现象探测方法。</s>