Classifiers and generators have long been separated. We break down this separation and showcase that conventional neural network classifiers can generate high-quality images of a large number of categories, being comparable to the state-of-the-art generative models (e.g., DDPMs and GANs). We achieve this by computing the partial derivative of the classification loss function with respect to the input to optimize the input to produce an image. Since it is widely known that directly optimizing the inputs is similar to targeted adversarial attacks incapable of generating human-meaningful images, we propose a mask-based stochastic reconstruction module to make the gradients semantic-aware to synthesize plausible images. We further propose a progressive-resolution technique to guarantee fidelity, which produces photorealistic images. Furthermore, we introduce a distance metric loss and a non-trivial distribution loss to ensure classification neural networks can synthesize diverse and high-fidelity images. Using traditional neural network classifiers, we can generate good-quality images of 256$\times$256 resolution on ImageNet. Intriguingly, our method is also applicable to text-to-image generation by regarding image-text foundation models as generalized classifiers. Proving that classifiers have learned the data distribution and are ready for image generation has far-reaching implications, for classifiers are much easier to train than generative models like DDPMs and GANs. We don't even need to train classification models because tons of public ones are available for download. Also, this holds great potential for the interpretability and robustness of classifiers.


翻译:我们打破了这一分解,并展示了常规神经网络分类师能够产生大量类别高品质图像,与最先进的基因化模型(如DDPMs和GANs)相仿。我们通过计算分类损失功能的部分衍生物,以优化输入优化输入生成图像。由于人们广泛知道直接优化投入与无法生成具有人意义的图像的有针对性的对抗性攻击相似,我们提议了一个基于掩码的智能重建模块,以使梯度具有可靠图像合成的识别能力。我们进一步建议了一种渐进式分辨率技术,以保证真实性,从而产生具有摄影现实性的图像。此外,我们引入了远程计量损失和非微量分布损失,以确保分类神经网络能够合成多样性和高知性图像。由于使用传统的神经网络模型,我们可以生成256美元和256美元的潜在分辨率,我们在图像网络上可以生成高质量的图像质量图像。 奇怪的是,我们的方法,甚至具有合成图像合成的精度的精度,我们的方法也适用于高清晰度的版本的版本模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
59+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
12+阅读 · 2018年9月15日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员