The Ensemble Kalman Filter (EnKF) is a popular sequential data assimilation method that has been increasingly used for parameter estimation and forecast prediction in epidemiological studies. The observation function plays a critical role in the EnKF framework, connecting the unknown system variables with the observed data. Key differences in observed data and modeling assumptions have led to the use of different observation functions in the epidemic modeling literature. In this work, we present a novel computational analysis demonstrating the effects of observation function selection when using the EnKF for state and parameter estimation in this setting. In examining the use of four epidemiologically-inspired observation functions of different forms in connection with the classic Susceptible-Infectious-Recovered (SIR) model, we show how incorrect observation modeling assumptions (i.e., fitting incidence data with a prevalence model, or neglecting under-reporting) can lead to inaccurate filtering estimates and forecast predictions. Results demonstrate the importance of choosing an observation function that well interprets the available data on the corresponding EnKF estimates in several filtering scenarios, including state estimation with known parameters, and combined state and parameter estimation with both constant and time-varying parameters. Numerical experiments further illustrate how modifying the observation noise covariance matrix in the filter can help to account for uncertainty in the observation function in certain cases.
翻译:Ensemble Kalman过滤器(EnKF)是一种受欢迎的连续数据同化方法,在流行病学研究中越来越多地用于参数估计和预测参数预测。观测功能在EnKF框架中发挥着关键作用,将未知系统变量与观察到的数据连接起来。观测数据和模型假设的主要差异导致在流行性建模文献中使用了不同的观测功能。在这项工作中,我们提出了一项新的计算分析,表明在使用 EnKF 进行本环境状况和参数估计时,观测功能选择的影响。在审查使用典型的可感知-传染-恢复(SIR)模型时,不同形式的流行病学观测功能的使用情况时,我们展示了不正确的观测模型假设(即将发生率数据与流行模式相匹配,或忽略报告不足)如何导致错误的过滤估计和预测。结果显示,必须选择一种观测功能,以很好地解释若干过滤假设情景中相应的EnKF估计数,包括与已知参数的状态估计,以及将状态和参数与典型的可感应恢复(SIR)模型模型模型模型的结合,我们展示的是,在恒度和感测测测测测度中,如何将测测测测测测测测测测测到恒和测到恒度参数。