Viability of electric car-sharing operations depends on rebalancing algorithms. Earlier methods in the literature suggest a trend toward non-myopic algorithms using queueing principles. We propose a new rebalancing policy using cost function approximation. The cost function is modeled as a p-median relocation problem with minimum cost flow conservation and path-based charging station capacities on a static node-charge graph structure. The cost function is NP-complete, so a heuristic is proposed that ensures feasible solutions that can be solved in an online system. The algorithm is validated in a case study of electric carshare in Brooklyn, New York, with demand data shared from BMW ReachNow operations in September 2017 (262 vehicle fleet, 231 pickups per day, 303 traffic analysis zones (TAZs)) and charging station location data (18 charging stations with 4 port capacities). The proposed non-myopic rebalancing heuristic reduces the cost increase compared to myopic rebalancing by 38%. Other managerial insights are further discussed.


翻译:电动汽车共享操作的可靠性取决于再平衡算法。文献中的早期方法表明使用排队原则的非中位算法的趋势。我们建议使用成本功能近似值来制定新的再平衡政策。成本功能以中位迁移问题为模型,在静态节点充电图结构中以最低成本流量保持和基于路径的充电站能力为模型。成本功能为NP,因此建议使用超速法,以确保在网上系统中解决可行的解决方案。该算法在对纽约布鲁克林的电动carshare的案例研究中得到验证,2017年9月BMW LeachNow业务(262车队,每天231小卡车,303交通分析区(TAZs))和收费站位置数据(18个有4个港口能力的收费站)中位数据共享需求数据。拟议的非中位再平衡超速将成本增长比近似再平衡38%。其他管理见解将进一步讨论。

0
下载
关闭预览

相关内容

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学中,代价函数,又叫损失函数或成本函数,它是将一个或多个变量的事件阈值映射到直观地表示与该事件。 一个优化问题试图最小化损失函数。 目标函数是损失函数或其负值,在这种情况下它将被最大化。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Deep Learning for Energy Markets
Arxiv
9+阅读 · 2019年4月10日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员