Viability of electric car-sharing operations depends on rebalancing algorithms. Earlier methods in the literature suggest a trend toward non-myopic algorithms using queueing principles. We propose a new rebalancing policy using cost function approximation. The cost function is modeled as a p-median relocation problem with minimum cost flow conservation and path-based charging station capacities on a static node-charge graph structure. The cost function is NP-complete, so a heuristic is proposed that ensures feasible solutions that can be solved in an online system. The algorithm is validated in a case study of electric carshare in Brooklyn, New York, with demand data shared from BMW ReachNow operations in September 2017 (262 vehicle fleet, 231 pickups per day, 303 traffic analysis zones (TAZs)) and charging station location data (18 charging stations with 4 port capacities). The proposed non-myopic rebalancing heuristic reduces the cost increase compared to myopic rebalancing by 38%. Other managerial insights are further discussed.
翻译:电动汽车共享操作的可靠性取决于再平衡算法。文献中的早期方法表明使用排队原则的非中位算法的趋势。我们建议使用成本功能近似值来制定新的再平衡政策。成本功能以中位迁移问题为模型,在静态节点充电图结构中以最低成本流量保持和基于路径的充电站能力为模型。成本功能为NP,因此建议使用超速法,以确保在网上系统中解决可行的解决方案。该算法在对纽约布鲁克林的电动carshare的案例研究中得到验证,2017年9月BMW LeachNow业务(262车队,每天231小卡车,303交通分析区(TAZs))和收费站位置数据(18个有4个港口能力的收费站)中位数据共享需求数据。拟议的非中位再平衡超速将成本增长比近似再平衡38%。其他管理见解将进一步讨论。