Adversarial attacks are a potential threat to machine learning models by causing incorrect predictions through imperceptible perturbations to the input data. While these attacks have been extensively studied in unstructured data like images, applying them to tabular data, poses new challenges. These challenges arise from the inherent heterogeneity and complex feature interdependencies in tabular data, which differ from the image data. To account for this distinction, it is necessary to establish tailored imperceptibility criteria specific to tabular data. However, there is currently a lack of standardised metrics for assessing the imperceptibility of adversarial attacks on tabular data. To address this gap, we propose a set of key properties and corresponding metrics designed to comprehensively characterise imperceptible adversarial attacks on tabular data. These are: proximity to the original input, sparsity of altered features, deviation from the original data distribution, sensitivity in perturbing features with narrow distribution, immutability of certain features that should remain unchanged, feasibility of specific feature values that should not go beyond valid practical ranges, and feature interdependencies capturing complex relationships between data attributes. We evaluate the imperceptibility of five adversarial attacks, including both bounded attacks and unbounded attacks, on tabular data using the proposed imperceptibility metrics. The results reveal a trade-off between the imperceptibility and effectiveness of these attacks. The study also identifies limitations in current attack algorithms, offering insights that can guide future research in the area. The findings gained from this empirical analysis provide valuable direction for enhancing the design of adversarial attack algorithms, thereby advancing adversarial machine learning on tabular data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员