The description of distributions related to grain microstructure helps physicists to understand the processes in materials and their properties. This paper presents a general statistical methodology for the analysis of crystallographic orientations of grains in a 3D Laguerre tessellation dataset which represents the microstructure of a polycrystalline material. We introduce complex stochastic models which may substitute expensive laboratory experiments: conditional on the Laguerre tessellation, we suggest interaction models for the distribution of cubic crystal lattice orientations, where the interaction is between pairs of orientations for neighbouring grains in the tessellation. We discuss parameter estimation and model comparison methods based on maximum pseudolikelihood as well as graphical procedures for model checking using simulations. Our methodology is applied for analysing a dataset representing a nickel-titanium shape memory alloy.
翻译:与谷物微结构有关的分布说明有助于物理学家了解材料及其特性的过程。本文件为分析3D Laguerre 星系变相数据集中谷物的晶体方向提供了一般统计方法,该数据集代表了多晶状材料的微结构。我们采用了复杂的随机模型,这些模型可以替代昂贵的实验室实验:以Laguerre 星系变相为条件,我们建议了用于分配立方晶体衬垫方向的交互模型,该模型的相互作用是相邻粒子在贝塞尔热中的两对方向之间的互动。我们讨论了基于最大伪相似度的参数估计和模型比较方法,以及模型模拟检查的图形程序。我们的方法用于分析代表镍-钛形状内存合金的数据集。