We study how stochastic differential equation (SDE) based ideas can inspire new modifications to existing algorithms for a set of problems in computer vision. Loosely speaking, our formulation is related to both explicit and implicit strategies for data augmentation and group equivariance, but is derived from new results in the SDE literature on estimating infinitesimal generators of a class of stochastic processes. If and when there is nominal agreement between the needs of an application/task and the inherent properties and behavior of the types of processes that we can efficiently handle, we obtain a very simple and efficient plug-in layer that can be incorporated within any existing network architecture, with minimal modification and only a few additional parameters. We show promising experiments on a number of vision tasks including few shot learning, point cloud transformers and deep variational segmentation obtaining efficiency or performance improvements.
翻译:我们研究基于随机差异方程(SDE)的理念如何激励对现有算法进行新的修改,以解决计算机视觉方面的一系列问题。不言而喻,我们的提法既与数据扩增和群体等同的明确和隐含战略相关,也与数据扩增和群体等同性相关,但源于SDE文献中关于估计某类随机过程的无限微量生成物的新结果。如果在应用/任务的需求与我们能够有效处理的各类过程的内在特性和行为之间有名义上的一致,我们就会获得一个非常简单和高效的插件层,可以纳入任何现有的网络结构中,只有最低限度的修改和少数额外的参数。我们展示了一些有希望的视觉任务实验,包括很少的镜头学习、点云变异器和获得效率或性能改进的深度变异分法。