This report describes the 2nd place solution to the ECCV 2022 Human Body, Hands, and Activities (HBHA) from Egocentric and Multi-view Cameras Challenge: Action Recognition. This challenge aims to recognize hand-object interaction in an egocentric view. We propose a framework that estimates keypoints of two hands and an object with a Transformer-based keypoint estimator and recognizes actions based on the estimated keypoints. We achieved a top-1 accuracy of 87.19% on the testset.
翻译:本报告介绍了2022年Egocentor and Multi-view Cames Challenge: Action discription.这项挑战旨在识别自我中心观点中的手-物件互动。我们提出了一个框架,用以估算两只手和一个带有以变压器为基础的关键点估测器的物体的关键点,并承认基于估计关键点的行动。我们在测试仪上达到了87.19%的顶位-一级精确度。