Data collected from a bike-sharing system exhibit complex temporal and spatial features. We analyze shared-bike usage data collected in Seoul, South Korea, at the level of individual stations while accounting for station-specific behavior and covariate effects. For this, we adopt a penalized regression approach with a multilayer network fused Lasso penalty. These fusion penalties are imposed on networks which embed spatio-temporal linkages, and capture the homogeneity in bike usage that is attributed to intricate spatio-temporal features without arbitrarily partitioning the data. On the real-life dataset, we demonstrate that the proposed approach yields competitive predictive performance and provides a new interpretation of the data.
翻译:从自行车共享系统中收集的数据具有复杂的时间和空间特征。我们分析在韩国首尔各站点一级收集的共享自行车使用数据,同时考虑特定站点的行为和共变效应。为此,我们采取了一种惩罚性回归方法,多层网络结合了Lasso处罚。这些混合处罚是针对嵌入时空连接的网络,并捕捉了由于复杂的时空空间特征而导致的自行车使用中的同质性,而不任意分割数据。关于真实生活数据集,我们证明拟议方法具有竞争性的预测性能,并提供了对数据的新解释。