Iterative gradient-based algorithms have been increasingly applied for the training of a broad variety of machine learning models including large neural-nets. In particular, momentum-based methods, with accelerated learning guarantees, have received a lot of attention due to their provable guarantees of fast learning in certain classes of problems and multiple algorithms have been derived. However, properties for these methods hold only for constant regressors. When time-varying regressors occur, which is commonplace in dynamic systems, many of these momentum-based methods cannot guarantee stability. Recently, a new High-order Tuner (HT) was developed for linear regression problems and shown to have 1) stability and asymptotic convergence for time-varying regressors and 2) non-asymptotic accelerated learning guarantees for constant regressors. In this paper, we extend and discuss the results of this same HT for general convex loss functions. Through the exploitation of convexity and smoothness definitions, we establish similar stability and asymptotic convergence guarantees. Finally, we provide numerical simulations supporting the satisfactory behavior of the HT algorithm as well as an accelerated learning property.


翻译:在培训包括大型神经网在内的各种机器学习模型时,越来越多地采用基于迭代梯度的算法;特别是,动力基方法,加上加速学习的保证,由于在某些类别的问题和多种算法中可被证实的快速学习的保证,因此受到了很多关注;然而,这些方法的特性只对不断递减者具有特性;在动态系统中常见的时间变化递减者出现时,许多这些基于动力的方法无法保证稳定性;最近,针对线性回归问题开发了新的高阶图纳(HT),显示有:(1) 时间变化递减递减者的稳定性和无刺激性趋同;(2) 持续递减者的不被动加速学习保证;在本文件中,我们扩展和讨论相同的HT结果,用于一般 convex损失功能;通过利用调和平稳定义,我们建立了类似的稳定性和平衡性保证。最后,我们提供了数字模拟,支持HT算法的令人满意的行为,作为加速学习财产。

0
下载
关闭预览

相关内容

在数学中,定义在n维区间上的实值函数,如果函数的图上任意两点之间的线段位于图上,称为凸函数。同样地,如果函数图上或上面的点集是凸集,则函数是凸的。
专知会员服务
50+阅读 · 2020年12月14日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
IRS-Aided Energy Efficient UAV Communication
Arxiv
0+阅读 · 2021年8月5日
Arxiv
9+阅读 · 2021年4月8日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员