We propose a novel framework for learning linear time-invariant (LTI) models for a class of continuous-time non-autonomous nonlinear dynamics based on a representation of Koopman operators. In general, the operator is infinite-dimensional but, crucially, linear. To utilize it for efficient LTI control, we learn a finite representation of the Koopman operator that is linear in controls while concurrently learning meaningful lifting coordinates. For the latter, we rely on KoopmanizingFlows - a diffeomorphism-based representation of Koopman operators. With such a learned model, we can replace the nonlinear infinite-horizon optimal control problem with quadratic costs to that of a linear quadratic regulator (LQR), facilitating efficacious optimal control for nonlinear systems. The prediction and control efficacy of the proposed method is verified on simulation examples.
翻译:我们提出了一个新框架,用于学习基于Koopman操作员代表的一组连续非自主非线性非线性动态模型的线性时变模型。 一般来说, 操作员是无限的, 但关键是线性。 为了将它用于有效的 LTI 控制, 我们学习了 Koopman 操作员的有限代表性, 该操作员在控制中是线性的, 同时学习了有意义的提升坐标。 对于后者, 我们依靠Koopmanizizing Flows -- -- Koopman 操作员的二面形代表。 有了这样一个学习模型, 我们可以用线性二次调节器( LQR)的成本取代非线性无线性无线性无线性极- 最佳控制问题, 便利对非线性系统进行有效的最佳控制。 模拟实例可以验证拟议方法的预测和控制效果。