This paper introduces new perspectives on analog design space search. To minimize the time-to-market, this endeavor better cast as constraint satisfaction problem than global optimization defined in prior arts. We incorporate model-based agents, contrasted with model-free learning, to implement a trust-region strategy. As such, simple feed-forward networks can be trained with supervised learning, where the convergence is relatively trivial. Experiment results demonstrate orders of magnitude improvement on search iterations. Additionally, the unprecedented consideration of PVT conditions are accommodated. On circuits with TSMC 5/6nm process, our method achieve performance surpassing human designers. Furthermore, this framework is in production in industrial settings.
翻译:本文介绍了模拟设计空间搜索的新视角。 为尽量减少时间到市场,这项努力比以往艺术中定义的全球优化更好地将限制满意度问题列为制约性的问题。 我们采用了基于模型的代理,与无模型的学习形成对照,以执行一项信任区域战略。 因此,可以对简单的进化前网络进行有监督的学习培训,这种学习的趋同相对微不足道。 实验结果显示搜索迭代在数量上有所改进。 此外,对PVT条件的空前考虑得到了考虑。 在使用TSC 5/6nm工艺的电路上,我们的方法取得了超过人类设计师的性能。 此外,这个框架还在工业环境中生产。