Within the dynamic world of Big Data, traditional systems typically operate in a passive mode, processing and responding to user queries by returning the requested data. However, this methodology falls short of meeting the evolving demands of users who not only wish to analyze data but also to receive proactive updates on topics of interest. To bridge this gap, Big Active Data (BAD) frameworks have been proposed to support extensive data subscriptions and analytics for millions of subscribers. As data volumes and the number of interested users continue to increase, the imperative to optimize BAD systems for enhanced scalability, performance, and efficiency becomes paramount. To this end, this paper introduces three main optimizations, namely: strategic aggregation, intelligent modifications to the query plan, and early result filtering, all aimed at reinforcing a BAD platform's capability to actively manage and efficiently process soaring rates of incoming data and distribute notifications to larger numbers of subscribers.
翻译:暂无翻译