In batch Kernel Density Estimation (KDE) for a kernel function $f$, we are given as input $2n$ points $x^{(1)}, \cdots, x^{(n)}, y^{(1)}, \cdots, y^{(n)}$ in dimension $m$, as well as a vector $v \in \mathbb{R}^n$. These inputs implicitly define the $n \times n$ kernel matrix $K$ given by $K[i,j] = f(x^{(i)}, y^{(j)})$. The goal is to compute a vector $v$ which approximates $K w$ with $|| Kw - v||_\infty < \varepsilon ||w||_1$. A recent line of work has proved fine-grained lower bounds conditioned on SETH. Backurs et al. first showed the hardness of KDE for Gaussian-like kernels with high dimension $m = \Omega(\log n)$ and large scale $B = \Omega(\log n)$. Alman et al. later developed new reductions in roughly this same parameter regime, leading to lower bounds for more general kernels, but only for very small error $\varepsilon < 2^{- \log^{\Omega(1)} (n)}$. In this paper, we refine the approach of Alman et al. to show new lower bounds in all parameter regimes, closing gaps between the known algorithms and lower bounds. In the setting where $m = C\log n$ and $B = o(\log n)$, we prove Gaussian KDE requires $n^{2-o(1)}$ time to achieve additive error $\varepsilon < \Omega(m/B)^{-m}$, matching the performance of the polynomial method up to low-order terms. In the low dimensional setting $m = o(\log n)$, we show that Gaussian KDE requires $n^{2-o(1)}$ time to achieve $\varepsilon$ such that $\log \log (\varepsilon^{-1}) > \tilde \Omega ((\log n)/m)$, matching the error bound achievable by FMM up to low-order terms. To our knowledge, no nontrivial lower bound was previously known in this regime. Our new lower bounds make use of an intricate analysis of a special case of the kernel matrix -- the `counting matrix'. As a key technical lemma, we give a novel approach to bounding the entries of its inverse by using Schur polynomials from algebraic combinatorics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员