Click-Through Rate (CTR) prediction, whose aim is to predict the probability of whether a user will click on an item, is an essential task for many online applications. Due to the nature of data sparsity and high dimensionality of CTR prediction, a key to making effective prediction is to model high-order feature interaction. An efficient way to do this is to perform inner product of feature embeddings with self-attentive neural networks. To better model complex feature interaction, in this paper we propose a novel DisentanglEd Self-atTentIve NEtwork (DESTINE) framework for CTR prediction that explicitly decouples the computation of unary feature importance from pairwise interaction. Specifically, the unary term models the general importance of one feature on all other features, whereas the pairwise interaction term contributes to learning the pure impact for each feature pair. We conduct extensive experiments using two real-world benchmark datasets. The results show that DESTINE not only maintains computational efficiency but achieves consistent improvements over state-of-the-art baselines.
翻译:点击浏览率(CTR)预测的目的是预测用户是否点击某个项目的概率,这是许多在线应用程序的一项基本任务。由于数据宽度的性质和CTR预测的高度维度,有效预测的关键是模拟高阶特征互动。这样做的一个有效方式是用自上神经网络嵌入的特征进行内部产品。为了更好地模型复杂特征互动,我们在本文件中提议为CTR预测建立一个新的DisentanglEd Self-at-TentIve(DESTINE)框架,明确将单元特征重要性的计算与双向互动区分开来。具体地说,一个特性对于所有其他特征的普遍重要性的单词性模型,而对齐互动术语有助于了解每个功能配对的纯影响。我们使用两个真实世界的基准数据集进行广泛的实验。结果显示,DESTEINE不仅保持计算效率,而且实现了对状态基线的一致改进。