导读:本文是“深度推荐系统”专栏的第十一篇文章,这个系列将介绍在深度学习的强力驱动下,给推荐系统工业界所带来的最前沿的变化。本文主要根据Google推出的引领推荐系统与CTR预估工业界潮流至今的一大神作W&D[1],所总结出来的深度推荐系统与CTR预估工业界必读的论文汇总。
欢迎转载,转载请注明出处以及链接,更多关于深度推荐系统优质内容请关注如下频道。
知乎专栏:深度推荐系统
微博:深度传送门
公众号:深度传送门
起初是因为在唐杰老师的微博上看到其学生整理的一个关于Bert论文高引用相关的图片(https://weibo.com/2126427211/I4cXHxIy4)。
一个伟大的学生做的一个BERT的论文以及它引用的文章之间的关系,相当于是一个针对论文Citation的Finding->Reasoning->Exploring的过程。感觉做得很酷,忍不住share出来了。。。他伟大的决定要写个算法自动搞定!
觉得这个整理思路不错,于是也照葫芦画瓢整理了一下推荐系统和CTR预估上工业界同样鼎鼎大名Google出品的W&D[1]论文相关高引用的论文汇总。其实主要是对近年来推荐系统和CTR预估工业界影响力较大的论文做一个简单的思路梳理,首先上图如下,圆圈内数字为论文被引用数量。
Collaborative Filtering
Deep部分演进
[SIGIR 17] Neural Factorization Machines for Sparse Predictive Analytics
[IJCAI 17] Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks
[ECIR 16] Factorization-supported Neural Network
[TOIS 18] Product-Based Neural Networks for User Response Prediction over Multi-Field Categorical Data
[RecSys 19] FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction
[KDD 18] Deep Interest Network for Click-through Rate Prediction
[AAAI 19] Deep Interest Evolution Network for Click-Through Rate Prediction
[IJCAI 19] Deep Session Interest Network for Click-Through Rate Prediction
[CIKM 19] AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
Wide部分演进
[IJCAI 17] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
[KDD 17] Deep & Cross Network for Ad Click Predictions
[KDD 18] xDeepFM: Combining Explicit and Implicit Feature Interactions
for Recommender Systems
[WWW 19] Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
强化学习
[WWW 17] DRN: A Deep Reinforcement Learning Framework for News Recommendation
[WSDM 19] Top-K Off-Policy Correction for a REINFORCE Recommender System
[IJCAI 19] Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology
知识图谱
[WWW 17] DKN: Deep Knowledge-Aware Network for News Recommendation
[CIKM 18] RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
Embedding技术
[ICCCA 18] Item2Vec-Neural Item Embedding for Collaborative Filtering
[RecSys 16] Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation
[KDD 18] Real-time Personalization using Embeddings for Search Ranking at Airbnb
[KDD 18] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba
[WWW 19] NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization
[IJCAI 19] ProNE: Fast and Scalable Network Representation Learning
[1] Wide & Deep Learning for Recommender Systems, DLRS 2016
相关文章:
鸟枪换炮,如何在推荐中发挥AI Lab开源中文词向量的威力?
最新!五大顶会2019必读的深度推荐系统与CTR预估相关的论文
Youtube推荐已经上线RL了,强化学习在推荐广告工业界大规模应用还远吗?
Google最新论文,首次引入自动网络设计高效解决大规模深度推荐模型的特征嵌入问题
KDD 2019高维稀疏数据上的深度学习Workshop论文汇总
本文转自“深度传送门”,作者“深度传送门”,点击阅读原文可直达原文。