Cellwise outliers are widespread in data and traditional robust methods may fail when applied to datasets under such contamination. We propose a variable selection procedure, that uses a pairwise robust estimator to obtain an initial empirical covariance matrix among the response and potentially many predictors. Then we replace the primary design matrix and the response vector with their robust counterparts based on the estimated covariance matrix. Finally, we adopt the adaptive Lasso to obtain variable selection results. The proposed approach is robust to cellwise outliers in regular and high dimensional settings and empirical results show good performance in comparison with recently proposed alternative robust approaches, particularly in the challenging setting when contamination rates are high but the magnitude of outliers is moderate. Real data applications demonstrate the practical utility of the proposed method.


翻译:细胞外向值在数据中广泛存在,传统的稳健方法在应用到这种污染下的数据集时可能失败。我们提议了一个可变选择程序,使用一个双向稳健的估算器,在反应和可能的许多预测器之间获得初步的经验性共变矩阵。然后,我们用基于估计共变矩阵的强健对应方取代初级设计矩阵和反应矢量。最后,我们采用适应性拉索,以获得可变选择结果。拟议方法对于常规和高维环境中的单向外向值是稳健的,而实证结果显示与最近提议的替代稳健方法相比表现良好,特别是在具有挑战性的设定污染率高但外向值中等的情况下。实际数据应用显示了拟议方法的实际效用。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年12月22日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员